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Agstract, The vector wave equation for an electromagnetic field
outside a perfectly conducting sphere situated in an inhomogeneous
anisotropic medium is reduced, by means of a dyadic Stratton-Chu
formula, to an equivalent vector integral equation, The anisotropy is
presumed to arise from a magnetic dipole at the center of the sphere,
so that the kernel of the integral equation consists of the inner
product of the appropriate conductivity tensor and the Green's dyadic
(in a form due to C, T, Tai) for a sphere in free space, A discussion
is given of the spherical vector wave functions involved, and various
transformations are applied to render the vector integral equation more
tractable, Finally the vector system is reduced to a single scal;r

integral equation apparently more suited to numerical solution through

proper redefinition of the domain of integration,

1, Introduction, The vector wave equation of interest has the form

OIS B0 0t et Pt b PP s 800 oy

curl curl E = ki - E (1)

-~ -~

where E is the unknown field, ko the free space wave number, and

I¥ a dyadic, or second order tensor, that expresses the anisotropy of

the medium, “Such a differential equation arises naturally in several




contexts [1], but in the present instance interest is centered on the
electromagnetic field, Eq, (1) comes about from Maxwell's equations
in the following way, Maxwell's equations, in a form appropriate to

an inhomogeneous anisotropic medium, read

oR : OF aDeff
cur1§=u°5;.l curl H=J + ¢ F = 5% )
div D .. = O div B = 0 (3)

where J 1s related to E by the ‘conductivity tensor @:
J=0.E , o (h)

and-the (effective) electric induction Deff is given by

‘Beff = 'o . - E (5)

The effective dielectric temsor & is related to the conductivity

tensor by the equation
w =X +0/ (we) (6)

Assuming harmonic time dependence ( eiwt) substitution of the seco'nd
of eqs, (2) into the first then leads to the vector wave equation (1)

upon taking account of (5),

If one expands the left hand side of (1) by the usual vector
identity, a term in grad div E results, In an inhomogeneous anisotropic
medium this term inextricably couples the field components, Thus not

only the vectorial nature of the boundary conditions but also the




Since, for an arbitrary vector F and dyadic &, both in CZ’
V. (EXIXG)=YXF-9XG=-F -vXVXxG

and

v-(«;xvxg):vxg.vxo

VXVXF-@

—YXF UXG-G - YXVXE,

where GT denotes the transpose of @, the diffe{;ence of the volume

integrals

[V (EXxVXGV and [V . (Gx VX Fdv
v \)
yields, in view of Gauss' theorem, the following vector Green's formula:
JE-9xvEe-a" - vxVxFlav=[n- @XVXE-FXVXGE (7)
v v ~

The terms in the surface integral may be expanded as follows:

n-GXVXF=VXF-.-nx€G and n.FxVX8=nx F.vVx@

~

and we finally obtain from (7) the desired generalization of the Stratton-Chu

formula:

JIE-9x9x@-vx9xF-.G)av= [(F."xVxG-@ *VxVxFlav -
v v .

=£{vxg.£xa-gx£-vxc}d8. (8)
)

The order of the inner products in these integrands is essential,
Let us now apply formula (8) to the vector wave equation

VXVxE=K K.E+ ), (9) ‘



where gﬂz) represents the current distribution of a finite source that may
be present,theconduction current in the anisotropic conducting medium
having already been included in & - E ., We thus take }3 = E and

@ to be the dyadic Green's function for a homogeneous isotropic medium:
VXVG =k 6+ I6(P-Q), (10)

but satisfying the same boundary and for radiation conditions as E ,

Thus at the surface of the perfectly conducting sphere,

RxE=0 and nxXG=0 (11)

~

Substitution of (9), (10), and (11) into (8) and taking account of
Silver-Muller type radiation conditions for E and @G then leads to
the following equivalent integral equations for the electric -field at
point P in an iﬁhomogeneous anisotropic medium exterior to a perfgctly

conducting sphere:

E® =F® +¥ [E(Q.-MWQ -aPrw (12)
va
or .
E(P) =F (P) + ki {[;GT(P,Q) - MQ - E(QR (13)
a »
where
F (i;) = - dun I{g_ (Q) - G(P,Q)dQ for eq. (12) ' (14%)
v
2 GT(P,Q) . J(QdQ for eq, (13)

Va denotes that portion of 3-space exterior to the sphere of radius

a, and .
M=« -1 =0/ (we ), (15)




It is appropriate here to consider the forms that M (which,
apart from multiplication constants, is essentially the conductivity
tensor) can take in various magnetoplasmas, Each form is obtainable

from the pondemotive equation for a magneto-ionic medium:

v
m5§=q[E+IX(_B.O+b)}-vm~v" (16)

where q and m denote the charge and mass, respectively, of a charged
particle moving with velocity Z in a medium with ambien£ magnetic

field BO and average collision frequency v, The form of conductivity
tensor is then determined in the usual way by assuming harmonic time
debendence, expressing the vector product in (16) in the appropriate
coordinate system, and introducing the polarization vector B(E) = (im)-lg(f)
and the notation of magneto-ionic theory [4]., For a uniform magnetic field

parallel to the z-axis we have the familiar result

T ~4Y 0
m R S iY U 0
uni form L (17)

0 o0 (ui-v¥yu/.

For a magnetic vector Bo lying entirely in the meridian plane in spherical

coordinates the tensor 1”7 takes the form

X :
“sph= TP -Y Y vP-r2 -1Y (18)




- eBor /(mw) = 2Y cos® / V1 + 3 cos™©
Tg = - eBOQ/ (mw) = ¥ sinQ/A/; + 3 cos @

Oy / w=5,U56 x 106 ./{ + 3 cos @ /[;o(r/a)BJ

For dipolar coordinates [5] B = cos Q/ra, a=r/ sinac y @ =@,

where Y
r

Y

with the ambient magnetic field being directed along a line.of force

a = const,(i,e,, parallel to 1,), P takes essentially the same

~f
form as (17):
m . T 2
dipolar U -Y 0 U -iY (19)
0 iy U

where Y - 0y / w,

We note that in-all the fdrms (17) - (19) the conductivity tensor
consists of a factor X = wp2 / wa, involving the electron denmsity,
multiplying a matrix which expresses only the effects of the ambient

magnetic field and the collision frequency, Thus

m=x@N, - (20)

where the form of # is immediately clear from the appropriate one of

expressions (17) -(19),




3. The Green's Dyadic

A, Tai's Form of the Green's Dyadic

The Green's dyadic that appears in the integral equations
(12) or (13) applies to the exterior problem for a perfectly conducting
sphere situated in homogeneous isotropic space, The spectrum of the
linear operator in (10) is therefore in general continuous, since the
volume exterior to the sphere is infinite, To determine & one can
either employ an integral representation over a contour fhat guarantées
outgoing waves at infinity or else adopt a series expansion in terms of
vector spherical wave functions, each term of which consists of a
generalized spherical harmonic in the "angular coordinates" @ and ¢ ,
multiplied by a discontinuous function of the radial coordinate, Since
G in the latter form is already available from the investigations of
C, T, Tai [2], it will be édopted here, The transpose of Tai's Green's

dyadic (this being the form appropriate to (13)), properly modified for

e"mt time dependence, reads as follows:
r(4) r(’+) '
M, (P) 8 Q) + N (P) B (Q), re < Tp (21a)
~ mn gn " mn "omn
T > 2 (n-m)!
G(PQ = E oy I o {uim) ,
- - (4) (4)
8 (P) " (Q) + H (P) N°(Q) rg>rp  (2b)
““mn " mn “"mn " _mn
o o o o
where ¢ is the Neumann symbol (1 for m =0, 2 otherwise),
¢ =ik 2B+l (22)

n o n(n+l) °

e o



and 0 and He are defined in terms of the spherical vector wave
~Cmnn ~omn
° r(1,l+) LY
functions M and N e as follows:
“'emn ~ "mn
(o) (o]
(1) (4)
8 P) = n:('p) + R: M’; (P) (23)
~“mn ~““mn ~““mn
(] (o] o]
OB (4
BE(P) = N + r N (p) (24)
—e ) n .e
0mn omn omn

The spherical vector wave functions themselves will be discussed in the
next section, The ;eflection coefficients RE and R: are defined

as follows:

L. jn(koa) € fkoa fn:koa)]'
n - (2) = >
h =’ (k a) T kel ik a)l

In the sequel we shall often simply write r for the radial coordinate

1]
rP of P and r' inctead of rQ.

We note that Gz (P,Q) =G, (Q,P), GT> (P,Q)_ =G (Q,P), simply
interchanging antecedents and consequents in the dyadics,

B, Vector Spherical Wave Functions,

The scalar spherical wave functions have the form [2],[3,sec,7,11]

1, (r) =2 (k1) P (cos @) S0} mp , (25)

mn
o

-
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where z, denotes a spherical Bessel function and (2 is the angular

variable (©,p). We note that

VZ' + k

e
mn mn
o o)

The spherical vector wave functions L’ . H: ' N (the superscript
"omn ”omn ~§mn '
r may on occasion be omitted) are then defined in terms of *e as
omn
followst
r dzn(kor) cos Pﬁ cos
L, =V, = = Pm (cos 9){ ]m ol + r z (k )30 } Ply +
mn mn
o o
(26)
- sin
+ 3 sin 5 Z,(k, r)Pm(cos O)[ ]m
r
M, =vx(¢e f)=£ Xr =
mn mn mn
) o
- m sin A
=+ 7% zn(kor)Pz(cos o){cos]m o1y -z, (k r) [sin ~¢ (27)
_ z (kor
N: = kolv X v X (ve r) = n(n + 1)——— n Pm (cos 0){ }m Pl +
~ mn mn~
) o
(28)
[k rz (k r)) de :
+ [cos}m 1, +
sin’" ® 2o

k r
(e]

]
[kor zn(kor)]
sin @ kor

Pz (cos 0){22:}m @l
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Me and N

i
have a reciprocal relation to each other:
~e
- mn

o™ o

-1 r
, N: =k VXM
-~ (o] -~ -~ ~
mn mn mn
Omn o [o]

Then we may_ write (21) as

X4 99 x [«‘”(Q) EOLE

mn~ mn
Le) O [o)

K20 XX ¢ ﬁv ALY [u“’(qn ro )@))r']. rr<r

T (n-m)!
@@ zflc nf n Cnem) !

v, X [(tg‘)(P) + 'Q) (P))r]V X (t@ (Q)r ) +

mn
Omn O o}

- W e, &) . @ N -
, +l%2vvap X [(temflP) +Rnte$))£]VQxVQ X (te (Q)s )
0 o

r'>r

. This form of G (P,Q) 1is helpful in expanding the dyadic into components

The expansion

Pn(cos Y) = mi: cm%%—:-—:%& P:(cos OP) P:(cos'OQ) cos m(c_pp - ch) (29)

will play an important role in what follows, It will, however, be more

convenient for our purposes to rewrite (29) in terms of the even and odd

spherical harmonics *

Yemn(ﬂ) Pm (cos @) [cii : ?}, (30)
o

o s
o T
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Thus

*e (p) = zn(kor\ Y, (Q), (31)
Omn omn

which leads to an even and odd resolution of (29):

Pn(cos y) = Pe’n(cos v) + Po’n(cos v) =
= ; e oMy @y @vet (@)1 131 (32)
meo ™ (n+m)!""e,mn e,mn o,mn o,mn
The spherical vector wave functions, (30) and (31), become
oY 3y
9z _(k r) ' e z (k r) e
n' o -1 . omn n o omn
Lg (P) = —57—— ¥, (1 +r 2.(") 56— 19 * T 5in G 3¢ },cp (33)
mn mn
o o
aYe aYemn
1 omn 0
fem(m =2,k (g 5o~ Lo~ S0 Ly (34
o
N (P =kry 1 +2k vy + ki(r.v)uy (35)
~€ ~ 7o e Ir o e o -~ e
nn mn mn mn
(o] o [o] o]
aze aYe
-1 v 8mn 1 §mn
= (k 1) {n(n+1)zn(k°r)Ye (M1 + 0k rzlk r)] [g—L+="75 30 11}

mn
o

We are now in a position to expand the dyadic products in GT(P,Q),
oY Y

Thus € €mn
omn [}
.’fe (P)ge @ - zn(kor)zn(kor')[.1.9 —9————5 .co' .}9' -
o Omn sin © sin
Y oY oY oY
1 gmn _ §mn 1 gmn _ §mn

“losinedp 36 Lo T lpsine Fe S lo

bYe aYg
Sn mn (36)
* 1S Sor Lyt

+




U i, e+ o s
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and, defining

Alor) = te, z (e )l Btk = Ter'z ()], (57)

2.\l 2 '
N, (P) N (Q) = (i rr') {1.[n(n + 1)1%, (k r)Z (k r)T, (DY QL +

oﬂn omn omn omn
L) 4
e
omn
+ n(n + l)zn(kor)ﬂn-(kor')[irYem(lﬂ) Sor EO' +

(o]
Y
€
1y (0) x9—1,]
+1 - +
| ~r 8in O' :mn 55' ~p'

oY
e
mn

+ n(n + Vb (k 0)Z (k £ )55 1g +

oY
°nn
.2 13y (), +
sin @ 5; ~p e, ~r!
0
oY oY
e e
. omn  mn
+ 4, (e 0B (k ) (1o —5— 557 1gv +
aze b!e
1 omn omn
+ }O sin O 00 ok l¢' +
oY BYe
oY oY ®mn mn
e e 0 0
mn  mn -5

'
lov * }¢.sin @ sin @' 1¢']}

(38)

+1 L -
~ps8in @ dp 30’

LW



e et

1k

The summations on m in (21) can then be expressed as

BZP(cos v)
gmn .
¢ M> - _dodoT
n+m H (P) H n(u?) N Zn (k r)Z (k r! ){19 sin © sin ©F o' ~
o
5 : (39)
2
n n 3P
o 0 e
9:000' 263" 0
" lo5in 6 Y " Ly siner Lo * 1y Seer Lyt

and

z-::—&)y:-l‘l (P) N (Q) = (k rr' )—1{1 [n(n+l)32z (k r‘z(k r')P (cos Y)l , +

°mn
o : on

BPe P,
n

Poc 2 L
'y 9 —1
+ a(nel)z b DRk r' D —srlo, + lLrsho dp' icp'] *

P ) 2
e e

Il
+ n(nsl )4k DZ (i r DL, —5—1} .1 sii =t

n
o 1 )
*jn(kor)pn(kor’g'e so3e™ o * 1o sin @ 903" }xp' *

3%, a%p
: 1 o"
* 1, 5in o 5907 lov *

Lo STR 0 sIn 0" Sgdg7 Lot

(40)
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We can thus write (21) as a dyadic wherein the summation on m no longer

appears explicitly:

vy @ e -
G:(P,Q) =n§1°n[£rq'¢ 0%r<) + RnhnOcor<)Jhndc°r>Xk°r<r>) ]El(ml)]zPen(cos Y).l.r' +
2 2 °
3 P 3 P
Ql(r<,r>) on o
* Lolain 0 ain 0" Spdp * RfTer™>) saer ov -
3%p a%p
en ‘en
-1 [—=2— Q (r_,r.) o .2 (r_,r,) -1 ,-
Lo'ain o Uire™s) 5o ~ sinor LT’ 3R
a%p a%p
e e

1 ) 1 o"
- }q;[sin o' Q’l(r<’r>)'393cp' “ sin © Qa(r<,r>) 330" ]}.0' *

3% ¥%p,
n Q(r_,r.) n
i ) o 2 "<V > 0
+ }¢[Ql(r<)r>laoag| + sin © sin ©° §@¢' J}¢'+ (l}la)
oP aPen
e Y 0
Qkr,) + 1anh“0cox-<)ll&f1 k°r>g<?—ﬁ— }°,+}r< Lo }4,) +
oP
bPen &n
, e o E
+ yﬂ 0‘Or<) + Rn}:%r<nhn0‘or>p;g Y-} }l'>' + 1‘¢ sin © .]'-1;)1
2 -1 ry > re
+ n(n+1)(k°r<r>) _ 3p
3P °n
€ Q

n
e ) 5'
l}1q‘o!.>¢rj;)“or<) * Rnﬂr?‘%le}s o' or * Er> sin 9' lcp') *

ar P
e e

O e on n
+/'nkor>l3nk°r<) + Rnhna‘or<)]90 090 .}r; * ].Jgp sin © 5; }r<')’

e —— v e mm— e PR e+ i o g At e e mt e e s - - S S U
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where .
Q(r_,r,) = [3 Gk r) + Boh (k r)n (k 1) (42)
Gran) = W) Pk e + B w 0 acr), 03

4, Transformations of the Vector Integral Equation

A, Reduction to Symmetric Form

It will now be assumed that the function X(P) (i,e,, the
plasma frequency) exhibits radial symmetry, and further that X(r) vanishes

for r > T, Then the integral equafion (13) takes the form

.
EP) = KP) + k5 { [ar' r% X (r') [QGL(R,Q + (@ + EQa' +
- L4 a -~
n
. ()
]
s [ are? x (@) [G(P,Q) - #(Q) - EQ40 )
r oL =

Evaluation of F(P) according to (14) for a horizomtal (i,e,,
parallel to 1,) current element of moment p at the point (b,Ol,Ql)

above the sphere:

Ig(r,0) = tap 35 = D100 - )oly - 9)

rasin (-] ~8 7
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ylelds, for horizontal polarization,

_ r(12 : (hz r(hz :
M b,0,, + R by b,0,, M P) +
~e 1'% en ' 1 ok ¥, ®n

mn
o o

(1) (4) (4)
+ INr (b,6,,0,) + KON (b,ol,¢1)19~N’(P) .
0

0

r>b
(45)
) ) )
r b
Mie (b,0,,9)(M; (P) + R) M, (P)] +
o o
(4) (1) (4)
+ Noe (b,Ol,q,l)[Nr (p) + BZ N (P)],
° ot o
r<b
For vertical polarization, a vertical current element at (b,Ol,wl),
Jv(r'm - fup o(r - b)6(® - 67)0(p = cpl) 1
~ 2 ~T
r sin @
leads in the same way to
Nr r(4)
2 [Nremn(b’ol’vl) + R (b,91,¢1)]N (P),r > b
r(p)-.o_p % e z___;(“"")' o
T e . n+m! (46)
9 nh=l M=o )
(b.Ol,col)[Nr ® + R, (M1, r<b
mn mn

o]

e+ e ot et et e i, it
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An attempt to expand E(P) in the usual way in a series of

spherical vector wave functions

® q @ o @
) =5 5 (20 (2) + ST () + EVrT (2) 4 AT ()
~ gl p=o P %pq P ~%pq P ~%pq Pl ~%pq

is foredoomed to failure, since the iterated summation causes the expansion.
coefficients in each row of the infinite system of algebraic equations re-
sulting from the substitution of (47) into (44) to be different, Thus unless
some device (like a generalization of the Watson transformation)is available
that permits one to discard;for each q , all but the first two coefficientsf
it will not be possible to solve for the expansion coefficients in (47) in

the usual way,

It may be possible to carry out such an expansion in terms of the
spherical Bessel functions and the Legendre polynomials (32) in Y . However,
even then it would be more convenient to have (b4) in symmetric torm to assure
the applicability of the usual theorems on eigenvalues, eigenfunctions and
developability for symmetric kernels [6],([7]., Thus we define the new (definite)

unknown function and source function
E(p) = ﬁ;"(P) . §(P) and ?(P) = ﬂi(P) * F(P) (48 a,b)

and the symmetric kernel

k 52,0 = @) - lr,0) - @ (49)
< <
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Then the integral equation (44) can be written in symmetric form as

2 3 ] '2 1] | .
£ (p) - ko[ { dr'r'< x (r') _{[}" K(PQ) - £(Qan +
(50)
ro'
o [ are? X [ KP,Q - £(@ da) = F(P)
r Qr ~ ~

We next must give a specific form for (49), which involves first of
all the determination of 2/ %. For this purpose we employ the method of
matrix Lagrange polynomials [8] and restrict ourselves to the spherical
coordinate form of #” (eq,(18) ) with U =1 (i,e,,the collision frequency
v=_0 ). The first step is to solve fhe characteristic equation
| # - AX| =0 for the 3 eigenvalues of the matrix M ., The

characteristic equation is the cubic

-

A3+}—-—Y2A2+—-}——A+ 1 0,

1-¥ .1-¥ 1-1¥

or

(A+21 - PR +1) = 0,

whence it follows that one eigenvalue is

Al = = 1. (51)

The reduced quadratic (A + 1)2 - Y2A2 = O then yields the other two

eigenvalues

hys=h=-@t 'Ol (52)
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Then [9,p,232] 71% can be represented in terms of matrix Lagrange

polynomials lol, ‘f;, 103 as

ﬂi?:Af«‘l»,Ag £2+A§ £, (53)
where
ilzﬂ ‘zﬁ_’?ﬁ £=’o1f2 (54)
MaMs ' 2 A Ryt 3 Ay Ay,
with
fk “p-A T, Ay = A  - A, (i,k =1,2,3)
Thus
SR R T
A5 = Y0 ] N7 Ay
Ayg = 20(1 ; !2)'.1 . -
and
' S
fo-s |an 2
ST A o
-1 ;Yrye g
f, - - _1 gl R 12 iy




Y+ 12
r
1
4%:1_!2 Y Yo
1Y,

Then the matrix interpolation

'

21
YrYg - iY9
2 .
Y + Yg :LYr
-iY Y
r

polynomials are, according to (54),

75 41'70 (55)
2
'{1 = (% %o 0
o 0 0
2
40 Y% -4
2 .
Z, =4 hte Yy | - L (56)
: 3
iyo _i7r 1
where 4. = Y/Y, 4o = YO/! . (57)
Thus, according to (53),
£ L
ﬂi = i {0(1 + 2 + 2
Ji+Y A -Y




. 1-¢€(1-§"5‘+)
,,*:1 4.4 - 2%
Hyod.
where
o 1 1
Y:° 3t f-%

q.# (1

1 -420 - 3%)

-2 q)

My Y.

N *14/9”;-

Bt | on .
b,
(59)

For the sake of brevity we shall shorten the notation for the elements of

+ nj(P)[G:;

r'“

oty *

,ﬂi as follows:
| ny ", ns
,* =i 0, ny, N5
n3 g g
.Then, according to (49), the elements of =~ kz(P,Q) are given by
K, (P,Q) = nl(p)[c'f,r,ﬁl(q) . Gfo"a » O] + (PG + Gogum, + %,,.3
+ n}(P)[G:r'"l + G:Q"“z + GT”,;\; ]
KlE(P,Q) = nl(P)[Gf,r,nz(Q) + Gf;.nh + G’f‘w.ﬁ;] + ﬁa(P)[Ggr,nz + Ggg,n‘* + °§¢"'§1 +

T.n5]
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T T T '
IS}(P,Q) = (P)[Grr'"}(q) + Grdﬂs + an,n6] + 112(1’)[601_,113 + G '"5 + G%,n6] +
(P)[G n e + @ neJ
r' 3 (99' 5 o' 6
T . . T ’
KZ].(P,Q) = ﬂa(P)[Grrcﬂl(Q) + Grdq G ”‘3] + HQ(P)[GO '1]1 + G&'"Z + GW“BJ +
+ “S(P)[Ggr'ﬂl ¢O"‘2+ a ,n;] (61)
(P,Q) = n,(P)GE_,n,(Q) + @, + G- ]+n(P)[ M+ G 4G ntd +
22" 2 rr' 2 rdl * g™ 4 r'2 * Yooy * Vgpes
T T T .
+ 115.(1’)[chr,'f|2 + chO"'l& + Gw,n; ]
K, (P,Q) = n,(P)G]_,n (Q) + G & 1+ n, (P)GT a ]
23'FQ) = pre M3+ Gging + Gpoingd + m, (PILGG 5 + Ggeg + oqp"'6 +
+ (PG, e + Gl
5 or' 3 Q)O' 5 op' 6
T T . b T
31(P'Q,) = n;(P)[GEr,nl(Q) + Gro' n,+ er,nBJ + nS(P)[GOr,ql + GT oot + G%,nBJ +
T . .‘
+ "6(P)[Gq;r'“ @9'"2 + G ,n3 ]
. T T T .‘ * T - T -
KBZ(P’Q) = 'IB(P)[GH_.'IZ(Q) + Gro' "lf+ Gm|n5] + ﬂs(p)[GGr'na + Gm'n" %‘ﬂsl +
T T -
+ "6(P)[G¢r'“ ch'“h +G '“5 ]

K”(P,Q) = 1. (P)I_Grr,nB(Q) + G'f-g' ng* Gfm'nGJ + 11;(1-")[G§r,n3 + Ggo,ns + G:’,nsl +

+ “6(P)[G$r' ¢gv'|5" G "l6]
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The complexity of the elements (61) casts doubt upon the
appropriateness of an attempt to determine the expansion coefficients
in the usual way, However, a numerical approach appears possible, and
we now direct our attention towards a form of (50) more suited for

numerical solution,

B, Reduction to a Single Scalar Integral Equation

In the case of one independent variable a well-defined method
exists for reducing a system of integral equations to a single scalar
integral equation [7, sec,17], [9,p.1]. The range of integration must
be finite, and the vector integral équation is reduced to scalar form by
simply redefining the kernel and other functions involved over an extended
range of integration, It is possible to apply a similar method to (50),

and we now proceed to its derivation,

Let the independent variables P and Q in (50) be respectively

P = (rp,Q) Q= (rga) (62)
and define new independent variables
P' = (p,0), Q' = (p',Q) (63)

over the spherical shell-like regions characterized by the following

inequalities:
r+(j- l)(ro -a)<p<as+ j(r° - a)

(j,k = 1,2,3) (64)

r' + (k - 1)(r° -a)<p'<as+ k(r° - a)
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Now the vector equation (50), when written in the form of a system,

is equivalent to the following:

E ®) - k fodr r' X(r')ijg@ Q 5 (Qaar + f dr'r' X(r )fK (3Q) %‘(Q)tﬂ'
-1 a gqqk

=9 j(P) (j =1,2,3) . (65)

If we now definé the new functions

2(P) = £(P) ((pv) - 4 (66)

and the new kernel

: Kjk(P’Q)’ r>r!
AP',Q") = X(r")Ky (PLQ) = X(r') < (67)

xjg(p,q), r<rt,

then (65) can be written as the single scalar equation

3ro-2a
2o - K2 [ [ klpe'i 0,000,000 240 @ = { (p,0), (68)
a o

Although (68) is still entirely equivalent to (65) it appears to possess
certain advantages in that we have to do with a scalar rather than a vector

integral equation and that the "bookkeeping" for machine computation is

spelled out explicitly in (66) and (67),




_ e,

3.

P, M, MORSE AND H, FESHBACH, Methods of Theoretical Physics,
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